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Challenge with Processor Design — Power Barrier

+ Current solution: Parallelization
+ Again face serious challenge
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Dark Silicon and the End of Multicore Scaling
[G. Venkatesh et.al. ASPLOS"10] [H. Esmaeilzadeh et. al., ISCA'11]

100%

+ Utilization wall [ASPLOS’10] 80%

= Assuming 80W power budget, at 60%
45 nm TSMC process, less than 40%|
7% of a 300mm? die can be

switched.

+ Power wall [ISCA’11]

= At 22 nm, 31% of a fixed-size chip Percent dark silicon: geomean
must be powered off .

= At8 nm, more than 50%. _ %T:?c':scf:ﬁuk Upper Bound, _ %(;?cr:s(;i:u,, Upper Bound,

+ A significant gap between what * 2“
is achievable and what is
expected by Moore’s Law e

= Due to power and parallelism limitation o 3 I i
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Potential of Customized Computing?

AES 128bit key Throughput Power Figure of Merit

128bit data (Gbis/W)

0.13mm CMOS 3.84 Gbits/sec 350 mW

FPGA[1)] 1.32 Ghitisec 490 mW 2.7 (114)

ASM StrongARM [2] 31 Mbitisec 240 mW

ASM Pentium lll [3] 648 Mbits/sec 414W

C Emb. Sparc [4] 133 Kbits/sec 120 mW 0.0011 (1/10,000)

Java [5] Emb. Sparc | 450 bits/sec 120 mW 0.0000037 (1/3,000,000)

[1] Amphion CS5230 on Virtex2 + Xilinx Virtex2 Power Estimator
[2] Dag Arne Osvik: 544 cycles AES - ECB on StrongArm SA-1110

[3] Helger Lipmaa PlIl assembly handcoded + Intel Pentium Il (1.13 GHz) Datasheet

[4] gcc, 1 mWIMHz @ 120 Mhz Sparc - assumes 0.25 u CMOS
[5] Java on KVM (Sun J2ME, non-JIT) on 1 mW/MHz @ 120 MHz Sparc - assumes 0.25 u CMOS

Source: P Schaumont and | Verbauwhede, "Domain specific

codesign for embedded security," IEEE Computer 36(4), 2003

Various Improvements Are Not Enough

+ Case study of H.264 [Hameed et al., ISCA’2010]
= Optimization using SIMD + VLIW - 10x energy efficiency

= Customized instruction fusion = 1.6x energy efficiency

« Still 50x away from ASICs - Not enough!
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Understanding Energy Inefficiency of Processors
[DAC’2014]

Typical Superscalar 00O Pipeline

LSQ + TLB
1] Int RF

Li-I RAT Reservation- D-cache ROB |

station
FP RF
o |7 | e
|
R &
FP|

Predictor Read/write
4
Parameter Value Bypass
Fetchlissue/retire width 4
Register read/write
# Integer ALUs 3
#FP ALUs 2
# ROB entries 96
# Reservation station entries 64
L1 I-cache 32 KB, 8-way set associative
L1 D-cache 32 KB, 8-way set associative
L2 cache 6 MB, 8-way set associative 7

Energy Breakdown of Pipeline Components

LSQ + TLB
1] Int RF

R tion-
L1-I RAT es;;z 1‘10“ D-cache ROB —

FP RF
)
oy
. I FP|
Branch Regisge
Predictor Read/write || ™ J A
‘ \\\ ™ Bypass Ve

oo \ ) 7
o Decode ., AN Register read/vrite
23% 6%
. \ /
Y \ /
~‘~\\ /l
\~~ 'l
Rename
12% Register files
\/ 3%
Memory
0% Scheduler
FPU 1%
8%
Mul/div
%= AL
14% 8
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Removing ‘Non-Computing’ Portions of the Pipeline

+ Remaining
- = ~10% +26% = 36%

o + Will drop to about 11%

= [f ALU is replaced by
dedicated logic

Rename
12%
Register files

\/3%

Scheduler
1%

Memory
10%

FPU
8%

Mulldiv —
4% IntALU
14%

What’s Beyond Processors?
Our Proposal - Customized Computing with Accelerator-Rich Architectures|

+ A customizable heterogeneous platform (CHP)
= With a sea of dedicated and composable accelerators

= Most computations are carried on accelerators - not on processors!
+ A fundamental departure from von Neumann architecture

¢ Why now?
= Previous architectures are deviceltransistor limited
= Von Neumann architecture allows maximum device reuse
* One pipeline serves all functions, fully utilized
+ Future architectures
= Plenty of transistors, but power/energy limited (dark silicon)

= Customization and specialization for maximum energy efficiency

+ A story of specialization
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Lessons from Nature:
Human Brain and Advance of Civilization

+ High power efficiency (20W) of human brain comes from specialization

= Different region responsible for different functions
+ Remarkable advancement of civilization also from specialization
= More advanced societies have higher degree of specialization
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UCLA Newsroom

UCLA Newsroom &5 > News Relea

Homa

NSF awards UCLA $10 million to create
: customized computing technology

159 9:45:00 AM

By Wilean Worg Kromibout|

The UCLA Henry Samueli Schoal of Enginesning and Applied Soence has bean awarded a $10 million
grank by the Mabional Soence Foundation's Expeditions in Co g program bo dewalop high-
parformance, enargy afficsent, customizable computing that could revalutisnies the way computers ans
usad in haalth care and other important applications.

I particustar, UCLA Engineering researchers will damaonstrate how tha new technology, known as

Resaarch dhaiTain-4| camputing, coulkd transform the male of medical imaging and hemodynamic simulation,
providing more cost-effective and corvanent salubons for praventres, diagnostic and therapeutic
Heakh Sciences procaduras and dramatically improving health cana quality, efficiency and patiant outcomes,
“This significant award is anather testament to the workd-class faculty hara ab UCLA who oo
push the envelape 1o Solve socisly's most pressing issues,” said UBCLA Chancallor Gers Blod

Student &ffairs

gratetul by the KSF, which has repeatedly provided crucial funding ta our faculty, helping to place the
: university amang the nation’s top fve in research Funding.”

Acadamics & Faoulty

In an effort to mest ever-increasing computing needs in wanous fields, the computing industry has
entered an "era of parallelization,” in which tens of thousands of computer serverd are donnscted in
warehGus cale data centers, sakl Jason Cong, the Chanoallar's Professor of Comouler SOsnios and
director of the new UCLA Center far Domain-Specific Comauting (CDSC), which will averses the
research, Bul thess parallel, general-purpose computing systems still face serious dhallenges in terms

Campus News

Medsa Cor

& [mages :

I Iriges of performance, energy, space and cost.

& Vidso

#@ Blogs Domain-specific camputing holds significant advantages, Cong said. While general-purpose computing

redies an computer architecture and languages aimed at any type of application, domain-specific

eomputing utilipes & customizable archilscture and custom-ofiented, high-lewsl computer langubges
For the Media tailored to a particular application area or domain = in this case, medical imaging and hemodynamic
Corntacs modeling. This customization ultimately results in much bess energy consumption, faster results, lower
costs and increased productivity.

Potrws releases
Avisceies The goal of the rew UCLA carter, Cang said, is to look beyond parallalization and focus on domain-
spaxific customization to bring significant power-performance effidency improvemnent to impartant

About WCLA application domains.
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Customized Computing at Single-Chip Level

Initial Effort: Accelerator-Rich CMP (ARC) for Domain-
Specific Computing
Multi-core + many dedicated accelerators

Accelerator +
DMA + SPM

GAM | Global Accelerator \
Manager N

GAM responsibility: | €---F
Accelerator

* Sharing
* Virtualization
» Scheduling )
, ~ -——
L2 Banks
Core
Memory
Cotroller y
[DAC’2012]

B Router
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ISA Extension and Overall Workflow in ARC

New ISA
Icacc-req t

|cacc-rsrv id, e

Icacc-cmd id, f, addr

Accelerator

Icacc-free id

Task

1. The core requests for a given type of accelerator (Icacc-req).
2. The GAM responds with a “list + waiting time” or NACK
3. The core reserves (Icacc-rsv) and waits.
4. The GAM ACK the reservation and send the core ID to accelerator
5. The core shares a task description with the accelerator through memory and starts it (Icacc-cmd).
6. The accelerator reads the task description, and begins working
7. When the accelerator finishes its current task it notifies the core.
8. The core then sends a message to the GAM freeing the accelerator (Icacc-free).
15
Possibility of Accelerator Composition — Use of
Accelerator Building Blocks (ABBs)
Denoise | Deblur | Registration | Segmentation

ABBs

Float Reciprocal (FInv) N v N

Float Square-Root (FSqrt) v v v v

Float Polynomial-16 (Poly 16) v v v v

Float Divide (FDiv) v v v v

NoC interface
Example: i ctro—
DMA-C SPM Bank Tt
Poly-8 ABB T
Id Id1 Id Id Ctrit -
ADD/sSUB/MUL
ASM ASM ASM ASM (ASM)
ASM ASM From Core (NoC
- interface)
-2to4 #_Ctrl Reg
ASM Decoder ] o
: AAA: Cuitrsior
16
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Second Effort: Accelerator Composition [ISLPED"12]

+ ABB

= Accelerator building blocks (ABB)
= Primitive components that can be
composed into accelerators

ABB islands

= Multiple ABBs

= Shared DMA controller, SPM and NoC
interface

ABC

= Accelerator Block Composer (ABC)

* Runtime composition of virtual accelerators
from ABBs
* Arbitrate requests from cores

Other components
= Cores
= L2 Banks

= Memory controllers
Accelerator composition: Static
mapping + dynamic allocation

M |$2|$2|C | C |$2($2(M
c|(c|jc|jc|jcfcjc|c

$2 |1 ($2 |1 |$2| 1 [$2( 1

$2 (1 [$2) 1 [$2| 1 |$2] 1

$2 (1 [$2 ABC[$2 | I |$2| I

$2 (1 |$2 |1 (82| 1 |$2] 1

c|fc|jc|c|c|cC
M|[$2|$2|C[C [$2|$2| M

III/ E >|[3{|>] [>{|>][»
0| |0 || || (09| | O
N 0| (0| | 00| (oo |B)| |0
Accelerator Block
Composer

L2 Memory
Bank Controller |E| Core

7

Static Mapping/Decomposition into ABBs

IABB2: Poly

ABB3: Sqrt

ABB4: Inv

ABB1, Type = Poly

Input: Mem, Output:ABB2
Function:(x0-x1),(x2-x3), ...

I

ABB2, Type = Poly
Input: ABB1, Output: ABB3
Function: x0*x1+x2*x3+....

!

ABB3, Type = Sqrt
Input: ABB2, Output: ABB4
Function: sqrt(x0)

!

ABB4, Type = Finv
Input: ABB3, Output: Mem
Function: 1/x0

Decomposed Denoise LCA
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Accelerator Composition Process at Runtime

Accelerator cloning

= Repeat to generate more LCAs if ABBs are

available

Core ID | ABB ABB ID
Type
X

5 B W W NN R B
N < g N 5 x <
T . L

Busy
Busy
Busy
Free
Busy
Free
Busy
Busy

g X

AB
ISLA
w

o
?”/v
~

v

ABB £
ISLAND3

w

Latest Effort: Composable Accelerators with
Programmable Fabrics [ISLPED’2013]

Network
‘ DMA Controller H e

[ | [ [ [ [ <]
(] [ ] [ [ [ ] ]
= [

Mem Controller L2 Bank ABB Island

Programmable Cgre

(] [ ] =] =] [= ] [
(=] [ [ [ =] [
=] [ [

= [ [

EE

= = Dynamic Resource

Accelerator
Block Composer

Allocation of ABBs

¢ Enhancement [ISLPED 2013]: with 20% of the chip area dedicated to
programmable fabric, we can achieve more:

= Flexibility: An average 8.2x (up to 146x) speedup in other domains, such as

commercial, vision and navigation

= Longevity: 22x speedup on a new application within the medical imaging domain

20

12111114
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Customized Computing at Server Node Level

21

Modern FPGA Architecture — A Simplified View

*

*

*

Configurable logic block [ 1o I N

@ Lookup table

Island-style configurable H M H

mesh routing

Dedicated components H M M H
= Specialization allows

optimization

= Memory, o o
= DSP (multiplier) blocks ’ ’

= Embedded processor
= High-speed I/0s oot Loui
= Anything that the FPGA ’ ’
architect wants to put in!
[ 00| N KN

Source: I. Kuon, R. Tessier, J. Rose. FPGA
Architecture: Survey and Challenges. 2008.

22
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Example of CDSC Heterogeneous Computing Platform

“Commodity” Intel Server Convey FPGA-based coprocessor

23

Application } [Application Engines Direct

: Data
i E:EQ-ITE Hub (AEs) Port
Processor Intel® L AES . | @& @@
Memory| XC6vIx760 FPGAs | ¥
Controll 80GBY/s off-chip bandwidth
Xeon Quad Core LV5408 ub. (MG, 24W Design Power J
40W TDP
Intel® 1/0
IVIETNOrY @ @ \ EMOIVA & ~ & 4
Subsystem 1 PRI, PO
Standard Intel® x86-64 Convey coprocessor
Server FPGA-based
x86-64 Linux Shared cache-coherent memory

23

Server Node-level Acceleration Example :
3D CT-Reconstruction Algorithm (EMTV) [FCCM’2015]

+ Optimization techniques:
= Datareuse
= Prefetching
= Pipelining = Fixed-point optimization
= Parallelization

| Platform | _Exec Time | Speedup |
1

CPU 54.6 hours
GPU 110 mins 29.8X
FPGA 38.8 mins 84.5X  » Sinogram *

v \ voxel reuse
DRAM Access Reduction : 1/800

24

12111114
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Server Node-level CPU + FPGA Integration

+ Press releases

Xilinx Demonstrates Industry's First QPI 1.1 Interface with

FPGAs at Intel Developer Forum

April 23,2014

What Power8 and OpenPOWER Might Mean for HPC

Timothy Prickett Morgan

whwire
ANCISCO
ﬂls making a big play in hybrid computing, 012
seeking to marry its POWERS processors
with various kinds of accelerators and high-
speed networking and opening up its chip
and system software through the

w

oframmable gate array (FPGA) interfacing to an Intel Sandy Bridge Xeon
sbrusing the Quickpath Interconnect (QPI) protocol Xjlinks QPI solution

IBM is working with FPGA makers Xilin|

April 10, 2013

| Altera Demonstrates Industry’s First QPI 1.1 FPGA Home Agent for Enhanced

Server Capabilities

Demo Features Stratix V FPGA Configured to Extend Co-processing for Intel Processors

San Jose, Calif., and IDF Beijing, April 10, 2013—Altera Corporation (NASDAQ: ALTR) today announced the industry’s first
demonstration of an FPGA Home Agent enabled by the Intel QuickPath Interconnect (QPI) protocol 1.1. Connecting to Intel’s

Sandy Bridge XEON pr rs, the ges an Altera® Stratix® V FPGA configured as the Home Agent, and it
supports both the Caching Agent and Home Agent in 3 Pactron Vigar Development Platform. This solution is ideal for designers of
I ignal-p q, packet p g and such as high-frequency trading and big data that
need higher performance-per-watt than traditional CPU configurations can deliver. Altera is demonstrating its QPT

running over the CAPl interface, so thig
the Impact2014 event, IBM and Xilinx
being accelerated by FPGAs and sho:
order of magnitude lower latency. A M
machines accelerated by Altera FPGA:
adapter and switch maker Mellanox T}
using Remote Direct Memory Access (
boosted throughput and cut latencies

1.1 intellectual property (IP) solution to support both the Caching Agent and Home Agent in a Pactron Vigor Development
Platform at the Intel Developers Forum (IDF) Beijing, April 10-11, in Altera’s booth #E120.

QP is the only way to coherently connect to an Intel server processor. The Altera StratixV FPGA transceiver has been qualified
to support the Intel QPI electrical at 8 Gbps. Developers of low-I h systems looking to extend
the flexible shared memory model that Intel uses for x86 programming can now efficiently integrate a Stratix V FPGA into their
systems. The Home Agent demo addresses 32 GB of memory on the motherboard connected to the socket with support for two
channels connecting to four 8 GB RDIMMs.

"Our QPI 1.1 solution provides developers of data centers and high-performance computing applications a platform to
significantly increase their compute performance while reducing system cost and power,” said David Gamba, director of the
compute and storage product line at Altera. "FPGAs deliver a highly effective, efficient way to speed the processing of large data

RANCISCO, Sept. 11, 2012 /PRNewswire/ - Xilinx, Inc. (NASDAQ: XLNX) today
1ged at the Intel Developer Forum (IDF) the industry’s first demonstration of a

sets through parallel processing and accelerated data transfers.” 25
Customized Computing at
Cluster and Datacenter Levels
26

12111114
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* Deployed in 2013
e Used for research

and teaching
» (CS133 (60+ students)
« (CS259 (18 students)

l Ethernet Switch l
Atom CPU Atom CPU Atom CPU
| || | _ Atom CPU__
$Ethernet $Ethernet EEEmEE Ethernet
| ZynqFPGA | | Zynq FPGA |

27

Datacenter Level Integration at Microsoft

« Microsoft Open Compute Server
- 1U, 2 wide servers

« Enough space &

power for "2 height,

2 length PCle card
« Squeeze in a single FPGA
Won'’t fit (or power) GPU

A. Putnam, “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services”, ISCA2014

28

12111114

14



1632 Server Pilot Deployed in a Production Datacenter

A. Putnam, “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services”, ISCA2014 2

Accelerating Large-Scale Services — Bing Search

1,632 Servers with FPGAs Running Bing Page Ranking Service
(~30,000 lines of C++)

95% Query Latency vs. Throughput

. SW + EPGA
2x Increase in —y

Throughput /4

29% Latency :
Reduction / , < 30% Cost

< 25 W Power

QUERIES PER SECOND (normalized)

L;L\TENCY(normaIized) O HW Fallures

A. Putnam, “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services”, ISCA2014 30

12111114
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How to Program Such “Beasts”?

-- “Write Once, Compile Anywhere”

31

UcC COMPUTER SCIENCE DEPARTMENT M@
FPT’2005 Keynote

Platform-Based Synthesis for
Field-Programmable SOCs

Prof. Jason Cong
cong@cs.ucla.edu
UCLA Computer Science Department

12111114
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1. C/C++ Based Synthesis for Dedicated Accelerators
xPilot (UCLA) -> AutoPilot (AutoESL) -> Vivado HLS (Xilinx)

Design Specification

" ) ousqisar uowwio)

()

_ || Mythmcl User Constraints
~

-

[ Code transformation & opt ]

-
Behavioral & Communication
\Synthnh and Optimizations

BuidAjojoid pue ‘uonedlLIaA ‘UoReINWIS

[

AutoPilot™

sisayjufs 1S3

Timing/Power/Laye
Constraints
—

or ASIC blocks

+ Platform-based C to RTL
synthesis

+  Synthesize pure ANSI-C and C+

+, GCC-compatible compilation
flow

+  Full support of IEEE-754
floating point data types &
operations

+ Efficiently handle bit-accurate
fixed-point arithmetic

+ SDC-based scheduling
+  Automatic memory partitioning

QoR matches or exceeds manual
RTL for many designs

Developed by AutoESL, acquired by Xilinx in Jan. 2011

33

Vivado High-Level Synthesis:
Production-Proven and Adopted by 1000+ companies

> C libraries:
« Arbitrary precision

Floating-point math.h

- DSP
« Linear algebra

OpenCV video functions

> Accelerated verification
— >100X faster than RTL design

> Fast compilation and design

exploration
— Algorithm feasibility
— Architecture lteration

Page 34

© Copyright 2013 Xilinx

cor

Hours-days
per

Design Time
(weeks)

Latency
(ms)
Memory
(RAMB18E1)

Memory
(RAMB36E1)

Registers

LUTs

Customer proven results

iteration

Verfed
i
Accelration
,,,,,,,,,,,,,,
Hand-coded | VivadoHLS
RTL
12 1
37 21
134 (16%) 10(1%)
273 (65%) 138(33%)
29686 (9%) 14263 (4%)
28152(18%) | | 24257 (16%)

& XILINX » ALL PROGRAMMABLE.

12111114
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Design Complexity: Medical Image Processing Example

Streaming vs. shared ?

FIFO vs. switching buffer?

3-D images

\

Segmentation

L

[ SegMean [€

Sync. granularity ?

Address mapping ?

Gradient

h 4 ) 2 l SegBodyStage1

Y

Data prefetching ?

HW or SW ?
Data reuse ?

Implementation options ?
Buffer size vs. bandwidth ?

Duplication ? .
On-chip memory throughput ?

System performance?

35

CMOST: Fully Automated Compilation and Mapping Flow

Application: C/C++/OpenMP4.0 User Directives Platform Spec.
/ System Optimizah%\
v v
/ \ Task graph
i & p;q Module evaluation I Data reuse
" Task graph extraction v N
i [ Block streaming I Prefetching ] <
= hardware
S [ HW/SW partitioning ] mode [ Module selectﬁon & duplication ]J
; design parameters
S [ Driver generation ]
S
g [ OpenCL generation ] Module templates, Configure C/RTL/scripts
System IP templates | | | - ) 4
) q (CRTL) ™ Xilinx Vivado HLS A\
[ Test generation ] OpenCL L= i Vivad
K\ ilinx Vivado /
4 ¥ v
design analysis/impl. report On-board Retargetable and optimized
executable HW/SW OpenCL source code

12111114
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Latest Research - Automating Customized Computing

Input Code(C/C++) Polyhedral-Based Data Reuse
| Optimization for Configurable Computing

4 "\ FPGA™3 Best Paper Award
Program Analysis
Loop_ S!ruc.ture Loop Improving Polyhedral Code Generation
Optimization for High-Level Synthesis CODES-ISSS’14

Best Paper Award
Code Generation
Theory and Algorithm for Generalized
Memory Partitioning in High-Level
Data Layout Array Partitioning Synthesis, FPGA'14

Optimization m An optimal microarchitecture for stencil
i

\ / computation acceleration based on non-
4 Module Selection/ 7\ uniform partitioning of data reuse buffers

replication (DAC'14)
'(;“‘t*.’ "‘f'°°t',‘"e Combining Computation with
ptimization Optimization Communication Optimization in System

Module-level Synthesis for Streaming Applications,
\_ Scheduling ) FPGA'14

N

i

J

—/

37

Memory Partitioning for Throughput Optimization

m Memory is still a bottleneck
= Data intensive applications: image/video
= Loop unrolling/tiling/pipelining

= Memory partitioning

g

. ® @
Cyclic LB cLe
Partition | | | 1
1 I 1 1 1 1
1 ! 1 1 ! 1
L} @ L} L} @ L]

2 2

3 P
D

Bank 1 Bank 2 Bank N

s Sl Nk
Size = K, Bandwidth = p Size = K, Bandwidth= N*p

N: Partition Factor
p: memory port number

Challenge: generate conflict-free memory partitioning for a given program ‘

38
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Memory Partitioning for HLS*

, s 1
m Cyclic partitioning 22
3
= Easy to implement :4
= Very effective in practice =
m Example a
= Williand (3*i+1) go to the same memory A . B
bank? at a2
a3 a4
m Theorem 22 28
Vi, a;*i+b,#a,*i+b, mod N — ==
A1 A 2

< gcd(a;-a,, N) t (b,-by)

Cyclic partitioning

*J. Cong, W. Jiang, B. Liu and Y. Zou. ACM TODAES 2011 (Best Paper Award) ‘

39

Memory Partitioning for Multidimensional Arrays

m Flatten-Based Partitioning
= Flatten multidimensional array
= Partition flattened single dimensional array
for (j=0; j<w1; j++)
for (i=0; i<wO0; i++)
foo(A[j][i], A[I[i-1], A[-1][i I, AG+1][i], AG][i+1]);
¥
foo(A[wO *j+i], A[wO *j+i-1], A[wO *j+i- w0], A[wO *j+i+ wO0], A[wO0 *j+i +1]);

Conflict free conditions:
Bank number Bank number distribution
10 N + 2 N * w0

e ~"NC " N}{wmo-1) Nt (WO+1)

6
4
z Partition results are related to array sizes!

% 17 18 19 20 21 2 23 24 2 w0

40

12111114
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Linear-Transformation-Based Partitioning*

m Linear transformation-based approach
= Multidimensional address X linearization: L(X)=a - ¥

= Bank mapping: bank(x)= L(x) mod N (Cyclic)

m Example: denoise

Bank2
x1 PR x1 ’/'
-
e _-~ _- Bank3
- P /’ /’

D . ’/O -’ ’/G _- _-" Bank4
2 /” /” -7 -7 /” /” - Bank0
-~ - -~ - _~ P an

. /. ’/‘ e ,. ’/G
-~ - . - - e Bank1
- ’/ ’, - ’/ ’/
ol ‘adife 0 @l " e , X
e color:banks

Vi, Ala,*i+bllc

< ged((ogg (@-ay)+ax;, (€-C), N) 1 (&, (by-b,)+x, (d,-d>))

1*j+d;1 not conflict with Ala,*i+b,][c,*j+d,]

| *Y.Wang, P. L, P. Zhang, C. Zhang and J. Cong. DAC 2013 |
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Access Conflict

for (i = 1; i <= n; i++)
for(j = 1; j <= min(n,n-i+2); j++)
foo(A[j+1] [i+1], A[Jj][2*i]);

ntM| O O [0 o o 0O O O

nf o O O @ o B o o o o

O 0O O O O [[0[0 o o o o

2[ o o o o 2] o[ [@O o0 o o o

11 o o o o 1 o0 o0 o o oo
T 2 n i T 2 2n X0

Iterator domain

Array accesses
bank(x0, x1)= (x0+x1)%3

42
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Conflict Polytope

m Conflict polytope of two references is a subset of iteration domain where the two

references are mapped on the same bank

1<i<n
1<i< for (i = 1; i <= n; i++)
=Jj=n for(j = 1; j <= min(n,n-i+2); j++)
i+j<n+2 foo (A[j+1] [i+1], A[j][2*i]);
@(+D+(G+1)=(2i+j)mod3 bank(x0, x1)= (x0+x1)%3
m Insert an extra variable k to linearize it
G+D+(+1)=Qi+ j)+3k o e
m Fourier-Motzkin Algo. (Fourier 1826, Motzkin1936)
®@ O
= Test the emptiness of the conflict polytope
= Algorithm complexity: O(m2 ) © o eo°
* m: number of inequalities (m=4 in the example) 1 O @€ O O
* t: number of of variables (t=3 in the example)
* independent of iteration domain size n 1 2 n

Conflict polytope

Generalized Memory Partitioning (GMP)

m Complexity independent of

= Sizes of iteration domain

Memory Partitioning
Alternatives

= Sizes of array

m Complexity related to

Build Conflict Polytopes = Dimensions of iteration domain and
for all ref pairs array
* Inreal case <=3

= Number of References
* Inreal case <=100

All
Polytopes
Empty?

m Number of memory partitioning

Valid memory partitioning

alternatives < number of references

12111114
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Experimental Results for Denoise

I

o

Performance BRAM LUT
6
4
2 A1
0 ‘
Performance BRAM LUT FF DSP

Rician (Il 4->1)

= Orig
B Partition

= Orig
B Partition

45

Automating Customized Computing - Another Example

Input Code(C/C++)
|

Loop Structure
Optimization

Data Layout
Optimization

Inter-Module
Optimization

~
J

Program Analysis

Restructuring

Code Generation

i

Array Partitioning

[

/

"\

Module Selection/
replication

\

——/

Optimization
Module-level
\_ Scheduling )

Combining Computation with
Communication Optimization in
System Synthesis for Streaming
Applications, FPGA'14

46
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Motivation
Tile size: 32x32 tile 3 > tile3
Image: 64x64, 4 tiles tile 2 tile 2
tile1 — tile 1
tile 0 ! > tile0
gradient rician

m Which implementation to use for each module?

= Memory partitioned v.s. Memory non-partitioned

non-partitioned gradient 128 21 2511 2125
partitioned gradient 176 56 7147 7262
partitioned rician 128 22 4692 3991
non-partitioned rician 176 88 14475 15537 o
Motivation
Tile size: 32x32 tile 3 > fle3
Image: 64x64, 4 tiles tile 2 tile 2
tile 1 ! tile 1
tile 0 ! > tile0
gradient rician

= How many number of replicas?

m Scheduling and Communication cost (number of tiles in the communication
channel)?

tiled ———> file3 tile 3 /\] tile 3
tile 2 <<> tile 2 v tile 2 «— ™ tile 2
tle1 —> tile1 tile 1 tile 1
tle0 S tile0 tile 0 /\f tile 0
gradient rician gradient rician
scheduling 0 21 tile scheduling 0 >2 tiles

48
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System-Level Synthesis for Streaming Applications

Goal of this work: understand and explore the design
| space of mapping streaming applications to FPGAs

Module Module
Selection Replication

Communication
Optimization

Scheduling

[_impLA [ impl_B |

L L L L
50 100 150 200

—Producer/Consumer data rate

matching problem

What is the minimum buffer size?|
modules?

LHow to schedule all the '

49

Proposed System Synthesis Framework

System SDF-based Implementation
input Throughput Application Library
Requirement Modeling
v v
Coupled Computation and Communication
Optimizations
¢ : ﬁ e
Selected Number of : cheaduling
output Implementation Replica Results

50
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Formulation (1/2)

m Derive a scheduling graph
= Associate each node with a time variable, denoting the starting
time of the node

= Scheduling graph: delineates all the scheduling constraints

* Module latency, Module replication, System throughput requirement, Buffer
constraints

Module latency constraints
et,: execution time of task a
et,: execution time of task b

Buffer Constraints
If buffer size betweenaand b is 2,
then add edges: b° > a2 b! > al

51

Formulation (2/2)

m Associate each node with a scheduling variable
= t(b?) - t(a’) >= et,
= t(a?) - t(b?) >=et,

= Scheduling variables are integer variables

m Schedulability checking problem is a System of Difference

Constraints (SDC) problem

= |t can be solved optimally in polynomial time by linear
programming relaxation

= And the solution is guaranteed to be integers

52
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Exploration

12
-== 2. \5
e - -
6 6
Scheduling Graph Find critical paths Module Improvement
e Find the length of longest *Find all the paths whose * Associate each edge a new
path (maxL) lengths are maxL, weight — the area penalty to
«In this example, maxL =8 eor more aggressively, remove this edge from the
(1-e)*maxL critical paths
eFind a minimum cut on the
graph

53

Streaming Synthesis (ST-Syn)

m Formulation - Schedulability checking

= System of Difference Constraint Problem

m Exploration - Identify critical path, module/buffer improvement

= Find e-critical paths in the scheduling graph

= Minimum cut problem

= Al

Start from the impl with the smallest
logic, minimum buffer size

relaxation

Schedulability
Checking

Identify e-Critical Paths
&
Module/Buffer Size Improvement

Fail T

Success

done
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Experiments on Denoise

= Our methodology: ST-Syn
= computation & communication co-optimization

m Separate:
= separate computation opt. + communication opt.
m > Communication and computation should be considered in a unified
framework

18 Average area

10 reduction: 47%
M Logic
l H BRAM

ST-Syn ‘Separate

Utilization
on s ®bB R

ST-Syn ‘Separate ST-Syn ‘Separate

200
Performance (fps)
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BUT HOW DO WE MANAGE SUCH
HETEROGENEOUS RESOURCES?

12/10/14 UCLA VLSICAD LAB 56
56
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Overview of Cluster Resource Management

m Cloud computing frameworks targeting different workloads
= MapReduce, Spark, Storm, MPI, etc.

m Each framework has a finite set of cluster resources
= CPU, memory, disk bandwidth, etc.
= Fine-grained sharing enabled by cluster resource manager

Framework1l

(MapReduce Framework2 ~ Framework3

(Spark) (MPI)
[ Cluster Resource Manager (Mesos/Yarn)

Distributed File System (HDFS)

Node | | Node | - Node Node

57

Our Cluster Accelerator Resource Management

m How to make sure acc resources are efficiently utilized?
= Each framework get the accelerator resources it deserves
= Tasks in each framework are assigned to their preferred node
= Fine-grained sharing of each accelerator

MapR

[ Mesos/Yarn er A anage

Distributed File System (HDFS)

v B e B

[ 3 - m;C B | - \ﬂacc] )
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Initial Experimental Results

+ Running multiple jobs of the same type on a 5-node FPGA cluster

180

[] accelerable segments

160 I_inear slow down
ER e [ cpu segments
£ 10 measured
§ 100 //(/,
E o I I
2 60 e — Job1
2 40 - el
R —— Job2 | - ]
0 -~

0 1 2 3 4 5

6 7 8 9

# of jobs running in parallel

* Priority-aware accelerator mapping

120

« Time-division multiplexing of accelerators

/I

100

80

A

60

/'/- —&—high-priority job

_/{ ~#-low-priority jobs

40 o

job latency (minute)

20 —

0

3 4 5 6 7 8

# of jobs running in parallel

Initial Experimental Results (Cont’d)

+ Running two jobs of different sizes on a 10-node cluster (5 nodes
equipped with FPGA accelerators)

100

ACC-oblivious
baseline 50

GAM accelerator
allocation

ACC utilization (%)

Optimal allocation
to achieve

Accelerator underut;ilizatio

n for a single job i
|
|

~70% savings

time

time

ACC utilization bounded by tasks launched op nodes without ACCs

time
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Concluding Remarks

+ New era of computing
= Future computing platforms will have a sea-of-accelerators
= With efficient support for customization and specialization
+ Customized computing at all levels
= Chip-level
= Server node level
= Data center level
+ Software is the key
= Programming models
Hopefully transparent to the programmer: Hadoop/MapReduce + C/C++, ...
= Compilation support
= Runtime management
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